
COT 6405 Introduction to Theory of 
Algorithms

Topic 6. Heapsort
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Heaps
• A heap is a complete binary tree  or a nearly 

complete binary tree; 
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Merge Sort v.s. Insertion Sort

• The number of comparisons in merge sort

– Θ(𝑛𝑙𝑔𝑛)

• The number of comparisons in insertion sort 

– Θ(𝑛2)

• Merge sort requires the allocation of new 
memory to complete the “Merge” procedure

• Insertion sort is in place

– No need to request additional space
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Heaps (cont’d)

• A nearly complete binary trees; We can think of 
unfilled leaves as null pointers
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Heaps (cont’d)

• Not a heap
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Max-heap
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Min-heap
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The implementation of heap
• Heaps are usually implemented as arrays (element 

index starts from 1)

• A max-heap example
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Cont’d
• To represent a complete binary tree as an array: 

– The root node is A[1]

– Node i is A[i]

– The left child of node i is A[2i ]

– The right child of node i is A[2i + 1]

– The parent of node i is A[ i/2 ] 
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Referencing heap elements

• So, we have

Parent(i) { return i/2; }

Left(i) { return 2*i; }

right(i) { return 2*i + 1; }
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Bit shift operations

• We can use bit shift operations to improve the 
efficiency

• 2*i - > left shift i by 1 bit

– E.g., (2*11 = 22)  00001011 << 1 = 00010110

• i/2 - > right shift i by 1 bit

– E.g., ( 3 / 2 = 1) 00000011 >> 1= 000000001
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Summary of heaps

• A heap is a complete binary tree  or a nearly 
complete binary tree

• A heap can be represented as an array A

– Root is A[1]

– Parent of A[i] is A[ 𝑖/2 ]

– Left child of A[i] is A[2*i]

– Right child of A[i] is A[2*i+1]

• Bit manipulations can be used to improve the 
efficiency
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Heap height

• Height of a node

– Number of edges on a longest simple path from 
the node down to a leaf.

• Height of a tree = height of the root

• Height of a heap

– Height of the root = lg n

• why?
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Heap height (cont’d)

• Show a heap with n nodes has  a height of  
Θ 𝑙𝑔𝑛

9/12/2016 14

h=0, 20

h=1, 21

10

9 7

4 3 2 1 h=2, 22

n = 20 + 21 +⋯+ 2ℎ = σ𝑖=0
ℎ 2𝑖 = 2ℎ+1 − 1

֞ ℎ = lg 𝑛 + 1 − 1 = Θ (𝑙𝑔𝑛) Assume a complete 
binary tree



Heap height (cont’d)

• What if the heap is not a complete binary 
tree? 
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Exercise

• Suppose you are given the following data structure 
to represent a binary Tree 

Struct BinaryTree{

int data;

*BinaryTree left;

*BinaryTree right;

}

• Write a function in C to return the height of a binary 
tree. You may declare your function like this

– int maxHeight(BinaryTree *p)
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Exercise (cont’d)

• Write a function in C to compute the height of 
a binary tree
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int maxHeight(BinaryTree *p) {

if (!p) return 0;

int left_height = maxHeight(p->left);

int right_height = maxHeight(p->right);

return (left_height > right_height) ? left_height + 1 : right_height + 1;

}

h(root) = 1 + max(h(left), h(right))



The property of a heap

• Heaps must satisfy the heap property

• Max-heap: 

– A[parent(i)] ≥ A[i] for all nodes  i > 1

– In other words, the value of a node is at most the 
value of its parent

– Where is the largest element in a max-heap 
stored?
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The property of a heap (cont’d)

• Min-heap: 

– A[parent(i)] ≤ A[i] for all nodes  i > 1

– In other words, the value of a node is at least the 
value of its parent

– Where is the smallest element in a min-heap 
stored?

• In this course, we focus our discussions on 
max-heap

9/12/2016 19



Maintaining the heap property

• How?

• We use HEAPIFY to maintain the property

• Before HEAPIFY, A[i] may violate the property

• After HEAPIFY, the property is restored at A[i].
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Heap Operations: MAX-Heapify()

• Given a node i in the heap 

– with children l and r. 

– two subtrees rooted at l and r

• Problem: The subtree rooted at i may violate 
the heap property

• Action: let the value of the parent node “float 
down”
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MAX-Heapify () (cont’d)
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MAX-Heapify () (cont’d)

Max_Heapify(A, i)

{ 

l = Left(i); r = Right(i);

if (l <= A.heap_size && A[l] > A[i]) 

largest = l;

else

largest = i;

if (r <= A.heap_size && A[r] > A[largest])

largest = r;

if (largest != i) 

Swap(A, i, largest);

Max_Heapify(A, largest);//why this works?

}
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How MAX-HEAPIFY works 

• heap-size is the current heap size

• Compare A[i ], A[LEFT(i )], and A[RIGHT(i )].

• If necessary, swap A[i ] with the larger of the 
two children to preserve heap property.

• Continue this process of comparing and 
swapping down the heap. 

– If we hit a leaf, then the subtree rooted at the leaf 
is trivially a max-heap.
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MAX-HEAPIFY example
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MAX-HEAPIFY example
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MAX-HEAPIFY example
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MAX-HEAPIFY example
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MAX-HEAPIFY example
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MAX-HEAPIFY example
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Swap function 

void Swap (A, i, j)

{   

int t = 0;

t = A[i];

A[i] = A[j];

A[j] = t;

}
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Swap function (cont’d)

• Swapping without using extra variable

• Bit operation: exclusive or

• void Swap (A, i, j)

{   

A[i] = A[i]∧A[j];

A[j] = A[j]∧A[i];

A[i] = A[i]∧A[j];

}
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Analyzing MAX-HEAPIFY

• What is the maximum possible size of a 
subtree?
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Analyzing MAX-HEAPIFY (cont’d)

• For a heap with n nodes, a subtree has the 
maximum size when 

– Its root is the left child of the root of the heap

– and It is a complete binary tree

– and the subtree rooted at the right child lacks the 
bottom level

– and the bottom level of the entire tree is exactly 
half full
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Analyzing MAX-HEAPIFY (cont’d)

• For a heap of n nodes and height x, suppose the left 
tree has the maximum size

• The size of the left tree is

• The size of the right tree is

• The size of the entire tree is (size of the left tree) + 
(size of the right tree) + 1
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Analyzing MAX-HEAPIFY (cont’d)

• Size of the entire tree 

• The size of the left tree is
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Analyzing MAX-HEAPIFY (cont’d)

• Fixing up relationships between i, l, and r
takes Θ(1) time

• The subtree at l has at most 2n/3 nodes (worst 
case: bottom row 1/2 full)

• So time taken by MAX-Heapify() is given by

• T(n) ≤ T(2n/3) + Θ(1) 

• By using master theorem (case 2), we have

• T(n) = O(lgn)
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Exercise

• Prove the elements in the subarray A[ 𝑛/2 +
1. . . n]  are all leaves of the heap tree
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Proof

• With the array representation for storing an n-
element heap, A[ 𝑛/2 + 1. . . n]  are leaves of 
the heap tree. Why?

• Otherwise the indices of the left children of 
these nodes are larger than 2* ⌊ n/2 ⌋ + 2, 
which lies outside the boundary of the heap.  
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Proof (cont’d)

• Also, A[ 𝑛/2 ] cannot be a leaf node, because 
the array has n elements and the last element 
A[n] must have a parent. 

• Hence there are exactly ⌊ n/2 ⌋ non-leaf nodes 
and therefore the leaves are indexed by ⌊ n/2 ⌋
+ 1, ⌊ n/2 ⌋ + 2, ..., n.
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