COT 6405 Introduction to Theory of
Algorithms

Topic 6. Heapsort

9/12/2016

Heaps

* A heap is a complete binary tree or a nearly
complete binary tree;

\

AN
/\

9/12/2016

Merge Sort v.s. Insertion Sort

The number of comparisons in merge sort

— 0O(nlgn)

The number of comparisons in insertion sort
—0(n?)

Merge sort requires the allocation of new
memory to complete the “Merge” procedure

Insertion sort is in place
— No need to request additional space

Heaps (cont’d)

* A nearly complete binary trees; We can think of
unfilled leaves as null pointers

\

N

-m

9/12/2016 4

Heaps (cont’d)

* Not a heap

—
/

/////////

Max-heap

10

/////////

Min-heap

/////////

31

The implementation of heap

* Heaps are usually implemented as arrays (element
index starts from 1)

* A max-heap example 16

14 10

2 4 1 |16/14|10, 8| 7| 9| 3| 2

9/12/2016

Cont’d

* To represent a complete binary tree as an array:
— The root node is A[1]
— Node iis Ali]
— The left child of node iis A[2i]
— The right child of node i is A[2i + 1]

— The parent of node jis A| li/2]]

2N

9 2] 4] [1] |16|l14|l10/8| 7|93 2|41

Referencing heap elements

 So, we have
Parent (i) { return.Li/ZJ; }
Left(i) { return 2*i; }
right(i) { return 2*i + 1; }

Bit shift operations

* We can use bit shift operations to improve the
efficiency

e 2%1 -> |eft shiftiby 1 bit
— E.g., (2*¥11 =22) 00001011 << 1 = 00010110
e Li/2] ->right shiftiby 1 bit
—E.g.,,(|]3/2] =1) 00000011 >> 1= 000000001

Summary of heaps

A heap is a complete binary tree or a nearly
complete binary tree

* A heap can be represented as an array A
— Root is A[1]
— Parent of A[i] is A[]i/2]]
— Left child of A[i] is A[2%i]
— Right child of A[i] is A[2*i+1]
* Bit manipulations can be used to improve the
efficiency

Heap height

Height of a node

— Number of edges on a longest simple path from
the node down to a leaf.

Height of a tree = height of the root

Height of a heap
— Height of the root = Ig n

why?

Heap height (cont’d)

 Show a heap with n nodes has a height of

O(lgn)

9

{E

10

hOZO

7 h=1, 21

{ s

n=2042 .. 420 =31 20 = 2041

=lg(n+1)—1= 0 (Ign)

9/12/2016

Assume a complete
binary tree

Heap height (cont’d)

 What if the heap is not a complete binary

tree? = h=0. 20
/ \
/ 9 7 h=1, 21
41 h=2,2°

n<20 421 4. 2R =30 20 =20*1 1
© h>2lgn+1)—1= 0(gn) heQlgn)

n> 20+21+...+2h_122?=_012i =2"h -1
© h<lIgln+1)=0(gn) heo(lgn)

Exercise

e Suppose you are given the following data structure
to represent a binary Tree
Struct BinaryTree{
int data;
*BinaryTree left;
*BinaryTree right;
}

* Write a function in C to return the height of a binary
tree. You may declare your function like this

— int maxHeight(BinaryTree *p)

Exercise (cont’d)

* Write a function in C to compute the height of
a binary tree

h(root) = 1 + max(h(left), h(right))

int maxHeight(BinaryTree *p) {

if (!p) return O;

Int left_height = maxHeight(p->left);

int right_height = maxHeight(p->right);

return (left_height > right_height) ? left_height + 1 : right_height + 1;
}

9/12/2016 17

The property of a heap

* Heaps must satisfy the heap property
* Max-heap:
— A[parent(i)] = Ali] for allnodes i > 1

— In other words, the value of a node is at most the
value of its parent

— Where is the largest element in a max-heap
stored?

The property of a heap (cont’d)

* Min-heap:
— A[parent(i)] < Ali] for allnodes i > 1

— In other words, the value of a node is at least the
value of its parent

— Where is the smallest element in a min-heap
stored?

* In this course, we focus our discussions on
max-heap

Maintaining the heap property

How?

We use HEAPIFY to maintain the property
Before HEAPIFY, A[i] may violate the property
After HEAPIFY, the property is restored at A[i].

Heap Operations: MAX-Heapify()

* Given a nodejin the heap

— with children /and r,
— two subtrees rooted at | and r

* Problem: The subtree rooted at i may violate

the heap property
* Action: let the value of the parent node “float

down”

MAX-Heapify () (cont’d)

10

§

/////////

MAX-Heapify () (cont’d)

Max Heapify (A, 1)
{
1l = Left(i); r = Right (i)
if (1 <= A.heap size && A[l] > A[i])
largest = 1;
else
largest = 1;
if (r <= A.heap size && A[r] > A[largest])
largest = r;
if (largest != 1i)
Swap (A, i, largest)
Max Heapify (A, largest);//why this works?

How MAX-HEAPIFY works

heap-size is the current heap size
Compare A[i], A[LEFT(i)], and A[RIGHT(i)].

If necessary, swap A[i] with the larger of the
two children to preserve heap property.

Continue this process of comparing and
swapping down the heap.

— If we hit a leaf, then the subtree rooted at the leaf
is trivially a max-heap.

MAX-HEAPIFY example

5

7

14

AN

2

9/12/2016

8

11

16

10

i

N

5

Max_Heapify (A, 2)

16

10

14

35

2

8

11

25

largest ==

MAX-HEAPIFY example

/

5

7

14

AN

2

9/12/2016

3 11

16

i

10

N

5

Max_Heapify (A, 2)

16[5]10 14| 7

35

2

8

11

L]

largest

26

MAX-HEAPIFY example

N

35

Max_Heapify (A, largest)

14 10
largest==| 5 7 {
2 8 11
16 | 14 10[5] 719135 2| 8|11

9/12/2016

largest

27

MAX-HEAPIFY example

14

/

largest

11

16

\

10

i

N

35

Max_Heapify (A, largest)

16

14

10[5]7

35

2

8

11

9/12/2016

Ll

largest

MAX-HEAPIFY example

/

14 10

§ wow
e

16 |14 |10 8 | 7| 9| 35 2[5]11

Ll

9/12/2016 |argest 29

16

11

Max_Heapify (A, largest)

MAX-HEAPIFY example

N

5

14 10
S 7 {
largest
V4
2 5 11 Largest =9, is a leaf - > stop
16|14 |10/ 8 | 7| 935 2[5]11

9/12/2016

Ll

largest .

Swap function

void Swap (A, i, j)
{
Int t =0;
t = Ali];
Ali] = Alj];
Aljl =t;

Swap function (cont’d)

e Swapping without using extra variable

* Bit operation: exclusive or
e void Swap (A, i, j)

{
Ali] = A[i]A[j];
Alil = A[j]"A[i];
Ali] = A[i] A[j];

Analyzing MAX-HEAPIFY

 What is the maximum possible size of a
subtree?

16

9/12/2016

Analyzing MAX-HEAPIFY (cont’d)

* For a heap with n nodes, a subtree has the
maximum size when
— Its root is the left child of the root of the heap
— and It is a complete binary tree

— and the subtree rooted at the right child lacks the
bottom level

— and the bottom level of the entire tree is exactly
half full

Analyzing MAX-HEAPIFY (cont’d)

For a heap of n nodes and height x, suppose the left
tree has the maximum size

The size of the left tree is
20421 22 =y 2t =27 — 11
The size of the right tree is
20421 o 2X 2=y 2t =20
The size of the entire tree is (size of the left tree) +
(size of the right tree) + 1
(2¥=1)+(2* 1 = 1)+1=n

Analyzing MAX-HEAPIFY (cont’d)

e Size of the entire tree
(2¥=1)+(2* 1 —1)+1=n=2* = %(n + 1)
e The size of the left tree is

2(n+1) 2n 1 2n

—_1=22 2 22

3 3 3

2% — 1=

Analyzing MAX-HEAPIFY (cont’d)

Fixing up relationships betweenii, [, and r
takes ®(1) time

The subtree at / has at most 2n/3 nodes (worst
case: bottom row 1/2 full)

So time taken by MAX-Heapify() is given by
T(n) < T(2n/3) + 6(1)
By using master theorem (case 2), we have
T(n) = O(lgn)

* Prove the elements in the subarray A[|n/2] +

Exercise

1...n] are all leaves of the heap tree

9/12/2016

16

10

14

913 2| 8|1

\)
|

Leaves of the heap tree

38

Proof

* With the array representation for storing an n-
element heap, A[[n/2] + 1...n] are leaves of
the heap tree. Why?

 Otherwise the indices of the left children of
these nodes are larger than 2* | n/2 | + 2,
which lies outside the boundary of the heap.

Proof (cont’d)

* Also, A[|n/2]] cannot be a leaf node, because
the array has n elements and the last element
A[n] must have a parent.

* Hence there are exactly | n/2 | non-leaf nodes
and therefore the leaves are indexed by | n/2 |
+1, |nf2]+2,..,n

