
COT 6405 Introduction to Theory of
Algorithms

Topic 6. Heapsort

9/12/2016 1

Heaps
• A heap is a complete binary tree or a nearly

complete binary tree;

9/12/2016 2

Merge Sort v.s. Insertion Sort

• The number of comparisons in merge sort

– Θ(𝑛𝑙𝑔𝑛)

• The number of comparisons in insertion sort

– Θ(𝑛2)

• Merge sort requires the allocation of new
memory to complete the “Merge” procedure

• Insertion sort is in place

– No need to request additional space

9/12/2016 3

Heaps (cont’d)

• A nearly complete binary trees; We can think of
unfilled leaves as null pointers

9/12/2016 4

Heaps (cont’d)

• Not a heap

9/12/2016 5

Max-heap

9/12/2016 6

10

9 7

4 3 2 1

Min-heap

9/12/2016 7

1

4 7

10 6 12 31

The implementation of heap
• Heaps are usually implemented as arrays (element

index starts from 1)

• A max-heap example

9/12/2016
8

16

14 10

8 7 9 3

2 4 1 16 14 10 8 7 9 3 2 4 1

Cont’d
• To represent a complete binary tree as an array:

– The root node is A[1]

– Node i is A[i]

– The left child of node i is A[2i]

– The right child of node i is A[2i + 1]

– The parent of node i is A[i/2]

9

Referencing heap elements

• So, we have

Parent(i) { return i/2; }

Left(i) { return 2*i; }

right(i) { return 2*i + 1; }

10

Bit shift operations

• We can use bit shift operations to improve the
efficiency

• 2*i - > left shift i by 1 bit

– E.g., (2*11 = 22) 00001011 << 1 = 00010110

• i/2 - > right shift i by 1 bit

– E.g., (3 / 2 = 1) 00000011 >> 1= 000000001

9/12/2016 11

Summary of heaps

• A heap is a complete binary tree or a nearly
complete binary tree

• A heap can be represented as an array A

– Root is A[1]

– Parent of A[i] is A[𝑖/2]

– Left child of A[i] is A[2*i]

– Right child of A[i] is A[2*i+1]

• Bit manipulations can be used to improve the
efficiency

9/12/2016 12

Heap height

• Height of a node

– Number of edges on a longest simple path from
the node down to a leaf.

• Height of a tree = height of the root

• Height of a heap

– Height of the root = lg n

• why?

9/12/2016 13

Heap height (cont’d)

• Show a heap with n nodes has a height of
Θ 𝑙𝑔𝑛

9/12/2016 14

h=0, 20

h=1, 21

10

9 7

4 3 2 1 h=2, 22

n = 20 + 21 +⋯+ 2ℎ = σ𝑖=0
ℎ 2𝑖 = 2ℎ+1 − 1

֞ ℎ = lg 𝑛 + 1 − 1 = Θ (𝑙𝑔𝑛) Assume a complete
binary tree

Heap height (cont’d)

• What if the heap is not a complete binary
tree?

9/12/2016 15

h=0, 20

h=1, 21

10

9 7

4 h=2, 20

n ≤ 20 + 21 +⋯+ 2ℎ = σ𝑖=0
ℎ 2𝑖 = 2ℎ+1 − 1

֞ ℎ ≥ lg 𝑛 + 1 − 1 = Θ (𝑙𝑔𝑛)

n ≥ 20 + 21 +⋯+ 2ℎ−1 = σ𝑖=0
ℎ−1 2𝑖 = 2ℎ − 1

ℎ ∈ Ω(lgn)

֞ ℎ ≤ lg 𝑛 + 1 = Θ (𝑙𝑔𝑛) ℎ ∈ 𝑂(lgn)

Exercise

• Suppose you are given the following data structure
to represent a binary Tree

Struct BinaryTree{

int data;

*BinaryTree left;

*BinaryTree right;

}

• Write a function in C to return the height of a binary
tree. You may declare your function like this

– int maxHeight(BinaryTree *p)

16

Exercise (cont’d)

• Write a function in C to compute the height of
a binary tree

9/12/2016 17

2

3

4

5

6

int maxHeight(BinaryTree *p) {

if (!p) return 0;

int left_height = maxHeight(p->left);

int right_height = maxHeight(p->right);

return (left_height > right_height) ? left_height + 1 : right_height + 1;

}

h(root) = 1 + max(h(left), h(right))

The property of a heap

• Heaps must satisfy the heap property

• Max-heap:

– A[parent(i)] ≥ A[i] for all nodes i > 1

– In other words, the value of a node is at most the
value of its parent

– Where is the largest element in a max-heap
stored?

9/12/2016 18

The property of a heap (cont’d)

• Min-heap:

– A[parent(i)] ≤ A[i] for all nodes i > 1

– In other words, the value of a node is at least the
value of its parent

– Where is the smallest element in a min-heap
stored?

• In this course, we focus our discussions on
max-heap

9/12/2016 19

Maintaining the heap property

• How?

• We use HEAPIFY to maintain the property

• Before HEAPIFY, A[i] may violate the property

• After HEAPIFY, the property is restored at A[i].

9/12/2016 20

Heap Operations: MAX-Heapify()

• Given a node i in the heap

– with children l and r.

– two subtrees rooted at l and r

• Problem: The subtree rooted at i may violate
the heap property

• Action: let the value of the parent node “float
down”

9/12/2016 21

MAX-Heapify () (cont’d)

9/12/2016 22

4

10 6

10

4

MAX-Heapify () (cont’d)

Max_Heapify(A, i)

{

l = Left(i); r = Right(i);

if (l <= A.heap_size && A[l] > A[i])

largest = l;

else

largest = i;

if (r <= A.heap_size && A[r] > A[largest])

largest = r;

if (largest != i)

Swap(A, i, largest);

Max_Heapify(A, largest);//why this works?

}

23

How MAX-HEAPIFY works

• heap-size is the current heap size

• Compare A[i], A[LEFT(i)], and A[RIGHT(i)].

• If necessary, swap A[i] with the larger of the
two children to preserve heap property.

• Continue this process of comparing and
swapping down the heap.

– If we hit a leaf, then the subtree rooted at the leaf
is trivially a max-heap.

24

MAX-HEAPIFY example

9/12/2016 25

16

5 10

14 7 9 35

2 8 11

5 10 14 7 9 35 2 8 11

Max_Heapify (A, 2)

16

MAX-HEAPIFY example

9/12/2016 26

16

5 10

14 7 9 35

2 8 11
Max_Heapify (A, 2)

5

largest

5 10 14 7 9 35 2 8 1116 5

largest

MAX-HEAPIFY example

9/12/2016 27

16

5 10

14 7 9 35

2 8 11
Max_Heapify (A, largest)

5largest

5 10 14 7 9 35 2 8 1116 5

14

14

largest

MAX-HEAPIFY example

9/12/2016 28

16

5 10

14 7 9 35

2 8 11
Max_Heapify (A, largest)

5

largest

5 10 14 7 9 35 2 8 1116 5

14

14

largest

MAX-HEAPIFY example

9/12/2016 29

16

5 10

14 7 9 35

2 8 11
Max_Heapify (A, largest)

5

largest

5 10 14 7 9 35 2 8 1116 5

14

14

largest

8

8

MAX-HEAPIFY example

9/12/2016 30

16

5 10

14 7 9 35

2 8 11 Largest = 9, is a leaf - > stop5

largest

5 10 14 7 9 35 2 8 1116 5

14

14

largest

8

8

Swap function

void Swap (A, i, j)

{

int t = 0;

t = A[i];

A[i] = A[j];

A[j] = t;

}

9/12/2016 31

Swap function (cont’d)

• Swapping without using extra variable

• Bit operation: exclusive or

• void Swap (A, i, j)

{

A[i] = A[i]∧A[j];

A[j] = A[j]∧A[i];

A[i] = A[i]∧A[j];

}

9/12/2016 32

Analyzing MAX-HEAPIFY

• What is the maximum possible size of a
subtree?

9/12/2016 33

16

5 10

14 7 9 3

2 5 1

14

8

6

Analyzing MAX-HEAPIFY (cont’d)

• For a heap with n nodes, a subtree has the
maximum size when

– Its root is the left child of the root of the heap

– and It is a complete binary tree

– and the subtree rooted at the right child lacks the
bottom level

– and the bottom level of the entire tree is exactly
half full

9/12/2016 34

Analyzing MAX-HEAPIFY (cont’d)

• For a heap of n nodes and height x, suppose the left
tree has the maximum size

• The size of the left tree is

• The size of the right tree is

• The size of the entire tree is (size of the left tree) +
(size of the right tree) + 1

9/12/2016 35

20 + 21 +⋯+ 2𝑥−1 = σ𝑖=0
𝑥−1 2𝑖 = 2𝑥 − 1

20 + 21 +⋯+ 2𝑥−2 = σ𝑖=0
𝑥−2 2𝑖 = 2𝑥−1 − 1

(2𝑥−1) +(2𝑥−1 − 1)+1 = n

Analyzing MAX-HEAPIFY (cont’d)

• Size of the entire tree

• The size of the left tree is

9/12/2016 36

(2𝑥−1) +(2𝑥−1 − 1)+1 = n ֜2𝑥 =
2

3
(𝑛 + 1)

2𝑥 − 1 =
2(𝑛+1)

3
− 1 =

2𝑛

3
−

1

3
≈

2𝑛

3

Analyzing MAX-HEAPIFY (cont’d)

• Fixing up relationships between i, l, and r
takes Θ(1) time

• The subtree at l has at most 2n/3 nodes (worst
case: bottom row 1/2 full)

• So time taken by MAX-Heapify() is given by

• T(n) ≤ T(2n/3) + Θ(1)

• By using master theorem (case 2), we have

• T(n) = O(lgn)

9/12/2016 37

Exercise

• Prove the elements in the subarray A[𝑛/2 +
1. . . n] are all leaves of the heap tree

9/12/2016 38

5 10 14 7 9 3 2 8 116

Leaves of the heap tree

Proof

• With the array representation for storing an n-
element heap, A[𝑛/2 + 1. . . n] are leaves of
the heap tree. Why?

• Otherwise the indices of the left children of
these nodes are larger than 2* ⌊ n/2 ⌋ + 2,
which lies outside the boundary of the heap.

9/12/2016 39

Proof (cont’d)

• Also, A[𝑛/2] cannot be a leaf node, because
the array has n elements and the last element
A[n] must have a parent.

• Hence there are exactly ⌊ n/2 ⌋ non-leaf nodes
and therefore the leaves are indexed by ⌊ n/2 ⌋
+ 1, ⌊ n/2 ⌋ + 2, ..., n.

9/12/2016 40

